5 research outputs found

    COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101

    Get PDF
    We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+ 5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M-r <= -12.4 and M-r similar or equal to -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of approximate to 3700 K and low expansion velocities (approximate to -300 km s(-1)) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L similar to 8.7 x 10(4) L-circle dot, T-eff approximate to 7000. K, and an estimated mass of M1= 18 +/- 1 M-circle dot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M-circle dot) and NGC. 4490-OT. (30M(circle dot))

    Common envelope ejection for a luminous red nova in M101

    Get PDF
    We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes MrM_r ≤\leq -12.4 and MrM_r ≃\simeq -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of ≈\approx3700 K and low expansion velocities (≈\approx-300 km s−1^{−1}) for the H I\small \text{I}, Ca II\small \text{II}, Ba II\small \text{II}, and K I\small \text{I} lines. From archival data spanning 15–8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with LL ~ 8.7 ×\times 104^4 L⊙L_\odot, TeffT_{eff} ≈\approx 7000 K, and an estimated mass of M1 = 18 ±\pm 1 M⊙M_\odot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5−10 M⊙M_\odot) and NGC 4490-OT (30 M⊙M_\odot).The research leading to these results has received funding from the European Union Seventh Framework Programme ([FP7/2007-2013] under grant agreement no. 264895. This work was partly supported by the European Union FP7 programme through ERC grant no. 320360. This work was supported, in whole or in part, by the European Science Foundation under the GREAT ESF RNP programme. This work was supported by the GROWTH project funded by the National Science Foundation under grant no. 1545949. LANL participation in iPTF was funded by the US Department of Energy as part of the Laboratory Directed Research and Development program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada–France–Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This paper makes use of data obtained from the Isaac Newton Group Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. This work is partly based on observations obtained with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain. This work is partly based on observations made with the William Hershell Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. The Gran Telescopio Canarias (GTC) operated on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work is partly based on data from Copernico 1.82 m telescope operated by INAF Osservatorio Astronomico di Padova. NER, AP, GT, and MT are partially supported by the PRIN-INAF 2014 with the project “Transient universe: unveiling new types of stellar explosions with PESSTO.

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper (arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
    corecore